
The Human Microbiome and Its Potential Importance to
Pediatrics

abstract
The human body is home to more than 1 trillion microbes, with the
gastrointestinal tract alone harboring a diverse array of commensal
microbes that are believed to contribute to host nutrition, developmen-
tal regulation of intestinal angiogenesis, protection from pathogens,
and development of the immune response. Recent advances in ge-
nome sequencing technologies and metagenomic analysis are pro-
viding a broader understanding of these resident microbes and
highlighting differences between healthy and disease states. The
aim of this review is to provide a detailed summary of current pedi-
atric microbiome studies in the literature, in addition to highlighting
recent findings and advancements in studies of the adult microbiome.
This review also seeks to elucidate the development of, and factors
that could lead to changes in, the composition and function of the
human microbiome. Pediatrics 2012;129:950–960
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The growing recognition that our res-
ident microbes may contribute fun-
damentally to infant and childhood
development and immunity is creating
an impetus to understand the impor-
tance of the human microbiome in pe-
diatrics.1–5 Global health efforts focused
on the first 1000 days of life and devel-
opmental origins of disease highlight
the potential significance of the human
microbiome for human health.6 Bacte-
rial cells outnumber human cells in the
body by an estimated factor of 10, with
∼10 to 100 trillion microbes living in the
gastrointestinal (GI) tract alone.7,8 The
collective genomes and gene products
of these resident microbes living within
and on humans are referred to as the
human microbiome.7,9 In 2007, the Na-
tional Institutes of Health–sponsored
HumanMicrobiome Project was formed
to gain insights into the evolution and
composition of the human microbiome,
factors that may influence or affect its
composition, and whether the human
microbiome affects health and tenden-
cies toward particular diseases.7 The
advent of new molecular technologies
has been useful in the detection of un-
culturedmicrobes andmay enablemore
microbes to be cultured in the future.10,11

These culture-independent methods
include fluorescence in situ hybridiza-
tion (FISH), DNA pyrosequencing, micro-
arrays (PhyloChip), and quantitative
polymerase chain reaction assays12,13

(Table 1). Advances in DNA sequencing
technologies and computational meth-
ods have been used to analyze bacterial
communities by using the conserved
16S rRNA gene for phylogenetic analy-
sis,7 resulting in a deeper understanding
of our commensal residents, beneficial
microbes, and their contribution to hu-
man health.

COMPOSITION OF THE HUMAN
MICROBIOME

This review discusses the develop-
ment and composition of the human

microbiome at different body sites and
illustrates how changes in composition
may have important consequences for
human pathophysiology and disease
susceptibilities. Human-associated bac-
terial communities likely play a central
role in host nutrition, development of
immunity, and protection from diverse
pathogens.9,14 The human body contains
many different sites that are colonized
by microbial communities during neo-
natal and childhood development and
throughout the lifetime of individuals in
health and disease states. Predominant
bacterial phyla (composed of hundreds
of bacterial genera and species) in the
human body, regardless of body site,
include Actinobacteria, Bacteroidetes,
Firmicutes, andProteobacteria (Table 2).15

Bacterial species populations vary sig-
nificantly between individuals, and bac-
terial community composition appears
to be driven primarily by body habitat.16

To highlight the heterogeneity of hu-
man microbiome composition, the hu-
man skin differs dramatically in terms
of predominant bacterial phyla (Acti-
nobacteria, Firmicutes, or Proteobac-
teria) by virtue of the location of the
skin site on the human body and its
relative humidity.17 The phylum Bacter-
oidetes is a minor component of the
human microbiome on many different

skin sites17 while Firmicutes com-
prise the major phylum in the vagina.18

Studies of the GI tract, by contrast, have
consistently demonstrated the pre-
dominance of the same phyla, Bacter-
oidetes and Firmicutes, in children and
adults.16,19 In addition to body habitat,
different bacteria may serve as “an-
chor microbes” in particular individu-
als. For example, a recent study found 3
distinct identifiable enterotypes in the
intestinal microbiome among adults
from multiple countries, which were
characterized by prominent genera in-
cluding Bacteroides (enterotype 1), Pre-
votella (enterotype 2), and Ruminococcus
(enterotype 3).20 These enterotypes
also appear to be driven by species
composition and relative functional
capacities of gut bacterial communi-
ties. Distinct intestinal enterotypes are
yet to be described in the pediatric
population.

The intestinal microbiome undergoes
dynamic change during development,
with the most dramatic changes in
composition believed to occur through-
out infancy and childhood.21,22 The di-
versity and flux of microbes observed
during this time are believed to be
important for the normal functional
development of the immune system
and its impact on health later in life.21,23

TABLE 1 Glossary of Terms

Microbiome: Collective genomes and gene products of resident microbes living within and on humans
Microbiota: Microbial community
Metagenome: Collection of genomes within complex microbial communities and human DNA
Culture-independent techniques: Techniques that do not require the growth of bacteria

on defined media under controlled laboratory conditions; they include techniques like PhyloChip,
FISH, and 16S rRNA gene pyrosequencing

PhyloChip: DNA microarray that is unique in its ability to identify multiple bacterial and archaeal
organisms from complex microbial samples13

FISH: Technique that uses fluorescent probes designed to bind to specific complementary sequences
of DNA, thereby allowing for detection of specific DNA sequences by fluorescence microscopy148

16S ribosomal RNA gene: 16S ribosomal RNA is a component of prokaryotic ribosomes that is highly
conserved between different species of bacteria and is used for phylogenetic studies

Pyrosequencing: Method of DNA sequencing that detects the release of pyrophosphate upon nucleotide
incorporation rather than chain termination by deoxynucleotides with Sanger sequencing149

UniFrac: b-Diversity measure that is phylogeny based; microbial communities are more similar
if they are composed of members that are more closely related, phylogenetically, as this
implies a shared evolutionary history15,147

Principal coordinates analysis: Standard multivariate statistic used to analyze and visualize individual
or group similarities
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The predominantly colonizing phyla
found in the infant GI tract belong to
Firmicutes, Bacteroidetes, and Proteo-
bacteria.10,21 However, the composition
of gut-associated bacterial communi-
ties was found to be highly variable in
individual infants in terms of timing
of acquisition and colonization by in-
dividual bacterial species.21 A recent
study observed significant changes
in genomic divergence and relative
abundance of 2 Citrobacter strains in
a premature infant during a 3-week
period, suggesting that fluctuations in
strains of a single species may con-
tribute to differences in the “fine” or
detailed functional capacity of the
microbiome.24 Facultative bacteria like
Escherichia coli, Enterococcus spp,
a-hemolytic streptococci, and Staphy-
lococcus spp colonize the sterile, aer-
obic newborn GI tract in the first few
days of life.21,25–28 After the first weeks
of life, anaerobic conditions have been
created in the gut due to the con-
sumption of oxygen by these facultative
bacteria.29,30 This environment coupled
with the presence of human milk oli-
gosaccharides (HMOs) in breast milk
leads to a shift in composition to pre-
dominantly anaerobic bacteria such
as Bacteroides, Bifidobacterium, and
Clostridium spp.21,25,31 Development of
a core microbiome, which can refer to
a set of microbes or a set of metabolic
functions, may occur by the end of
infancy.21,32,33 However, recent meta-
genomic studies suggest that the gut
microbiota of school-age and adolescent

children differ significantly from that of
adults,34,35 indicating that the human
microbiome may be evolving during
childhood and adolescence.

ENVIRONMENTAL FACTORS
AFFECTING THE COMPOSITION OF
THE HUMAN MICROBIOME

Mode of Birth Delivery

Mode of birth delivery, hospitalization,
diet, and nature of feeding are envi-
ronmental factors that may impact the
composition and diversity of the infant
microbiota.36 Early microbial coloniza-
tion of a newborn begins at birth.21,37

The microbiota of vaginally delivered
newborns represented the maternal
vaginal and intestinal microbiota, while
newborns delivered via cesarean
delivery exhibited a microbiome repre-
sentative of the maternal skin micro-
biota including Staphylococcus spp
(Fig 1).38 Vaginally delivered newborns
exhibited bacterial communities com-
posed of several prominent genera
including Lactobacillus, Prevotella,
Escherichia, Bacteroides, Bifidobacte-
rium, and Streptococcus spp.38,39 Dif-
ferent molecular methods confirmed
a reduced proportion of Bifidobacte-
rium or Bacteroides spp in the GI tract
of infants delivered via cesarean de-
livery.29,40 Regardless of delivery mode
and in contrast to their mothers, bac-
terial communities among newborns
exhibited a uniform distribution across
different body sites, including the skin,
nasopharynx, intestine, and oral cavity.38

Presumably, it takes weeks or longer
for the human microbiome to differ-
entiate into body site–specific micro-
bial communities. A recent study by
Capone et al corroborates this argu-
ment as site-specific bacterial com-
munities were found on the skin of
infants ranging from 1 to 3 months of
life.41 As such, the birth process and
mode of delivery may have a profound
impact on microbial composition early
in life, and these factors may help ex-
plain 1 aspect of the developmental
origins of human microbiomes at dif-
ferent body sites.

First Foods: Breast Milk and Infant
Formula

Beneficial factors in breast milk are
widely acknowledged and include im-
munoglobulins, cytokines, growth fac-
tors, lysozyme, lactoferrin,andHMOs.42–44

HMOs are an abundant carbohydrate
component in breastmilk and function
similarly to prebiotics, stimulating
the growth of Bifidobacterium sp and
thereby selectively altering microbial
composition in the infant intestine.45

More than 200 different HMO struc-
tures have been characterized in hu-
man milk, and HMOs contain a lactose
core with diversity generated by co-
valent modifications such as extensive
fucosylation and/or sialylation.46 Par-
ticular HMOs also share similar glycan
structural motifs, which are believed
to protect infants from disease by
acting as decoys in preventing patho-
gens from binding to epithelial cells.47

TABLE 2 Predominant Bacterial Phyla in the Human Body

Phylum Class Characteristics Examples

Firmicutes Bacilli; Clostridia Gram-positive; diverse in their morphology
(rod, coccoid, spiral), physiology (anaerobic, aerobic);
include commensal and beneficial bacteria

Lactobacillus; Ruminococcus; Clostridium;
Staphylococcus; Enterococcus; Faecalibacterium

Bacteroidetes Bacteroidetes Gram-negative; composed of 3 large classes widely
distributed in the environment, including soil,
seawater, and guts of animals

Bacteroides; Prevotella

Proteobacteria Gammaproteobacteria;
Betaproteobacteria

Gram-negative; include a wide variety of pathogens Escherichia; Pseudomonas

Actinobacteria Actinobacteria Gram-positive; diverse morphology; major
antibiotic producers in the pharmaceutical industry

Bifidobacterium; Streptomyces; Nocardia
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Anaerobes such as Bifidobacterium
appear during the first weeks of life,
and species of this genus are well
adapted to HMOs.48 While numerous
studies reported a higher relative
abundance of Bifidobacterium and
Lactobacillus in the microbiomes of
breastfed infants,21,44,49,50 others have
reported no difference in abundance
between these 2 genera in breastfed
and formula-fed infants.29,51,52 In-
creased colonization by Clostridium
spp and particularly C difficile in
formula-fed infants compared with
breastfed infants has been reported in
several studies.23,29 The greater abun-
dance of C difficile in the intestinal
microbiota of formula-fed infants has
also been associated with eczema in
infants.29,52,53 Breastfed, vaginally de-
livered term infants exhibited reduced
colonization by C difficile and E coli and
enhanced colonization by beneficial
microbes, like Bifidobacterium spp.29

The proliferation of beneficial microbes

supported by breastfeeding may pro-
vide protection from disorders such as
allergies, neonatal diarrhea,54 necro-
tizing enterocolitis (NEC),55 obesity,56

and type 2 diabetes.57

Hospitalization and Gestational Age

Hospitalization and gestational age
may impact the composition and de-
velopment of the intestinal microbiota.
Preterm infants, exhibiting diverse
bacterial communities after birth,
acquired similar intestinal bacterial
composition during the first weeks of
life as a result of cross-transmission
during hospitalization.58 Correspond-
ingly, increased hospital stays have
been associated with delays in coloni-
zation and development of the infant
intestinal microbiota, which could re-
sult fromexposure to differentmicrobes
or antibiotic treatment.59,60 For ex-
ample, increased colonization by C
difficile was observed in both pre-
term infants and infants hospitalized
after birth, which could be attributed
to a high carriage rate and the per-
sistence of C difficile spores in the
environment.29 Furthermore, the in-
testinal microbiota of preterm infants
with a gestational age of ,33 weeks
exhibited significantly reduced bacterial
diversity.61,62 In particular, recurrent
C difficile infection and other disease
states have been associated with
reduced bacterial diversity in the
intestine.63

Effects of Diet

Major shifts of taxonomic groups in the
microbiome have been observed with
major life events including changes in
diet, such as weaning to solid foods.31

In fact, diet may be a primary factor
involved in generating compositional
change and diversity in the micro-
biome.64 Studies performed in germ-free
mice colonized with human microbial
communities revealed that the initial
colonizing bacterial communities can

be rapidly altered by diet.65 Alterations
of fiber and fat/protein content in the
diets of a small cohort of children and
adults also yielded changes in the
composition of the microbiome within
a 24-hour period, which then remained
stable over the duration of the study.66

Longer-term changes in diet may be
necessary to effect more substantial
changes. Moreover, the Bacteroides
enterotype was associated with con-
sumption of animal protein and saturated
fat, whereas the Prevotella enterotype
was associated with a carbohydrate-
rich diet.66 Comparisons of intestinal
microbiota from children in rural Africa
and Europe exhibited similar patterns
with a greater abundance of Bacter-
oidetes and lower abundance of Firmi-
cutes in the Africa cohort compared
with the European cohort.67 Bacteroides
spp produce beneficial molecules like
polysaccharide A and short-chain fatty
acids.65,68 Polysaccharide A yielded a
protective effect in a mouse colitis
model,69 while short-chain fatty acids
have demonstrated beneficial effects
for the host including the maintenance
of the colonic epithelium, provision of
energy for host metabolism, and reg-
ulation of immunity14 (Fig 2). Bacter-
oides spp may affect the maturation of
humoral immunity in early infancy and
the balance of the Th1 and Th2 cell
immunity.2,70–73 A study also reported
an abundance of 2 genera, Prevotella
and Xylanibacter, which contain genes
involved in the hydrolysis of cellulose
and xylan. These findings support the
hypothesis that the intestinal microbiota
is altered by differences in diet, allow-
ing for enhanced energy extraction
from a polysaccharide-rich diet and
anti-inflammatory effects.67 Microbial
communities in the intestinal micro-
biota were first shown to influence
host energy homeostasis and fat stor-
age by Backhed et al.74 Subsequent
studies revealed the ability of intesti-
nal microbiota to suppress the expres-
sion of fasting-induced adipose factor,

FIGURE 1
16S bacterial rRNA analysis reveals influence
of delivery mode on the neonatal microbiome.
UniFrac analysis revealed similarities and clus-
tering of bacterial communities based on the
mother’s body habitat or the delivery mode of
the newborn. Each colored point represents
a similar community in specific body sites of the
mother and all newborn body habitats.147 The
percentage of variation of the principal coor-
dinates analysis is indicated in white text on
both axes. (Reproduced with permission from
Dominguez-Bello MG, Costello EK, Contreras M,
et al. Delivery mode shapes the acquisition and
structure of the initial microbiota across mul-
tiple body habitats in newborns. Proc Natl Acad
Sci USA. 2010;107[26]:11973.)
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resulting in the increased storage of
triglycerides in adipocytes.74 A human-
ized gnotobiotic mousemodel supported
this observation with mice developing
more adiposity within 2 weeks of being
fed a typical Western diet, high in fat and
sugar and low in plant polysaccharides,
compared with control mice.65 Together,
these studies suggest that the human
diet may impact the phylogenetic di-
versity and functional capacity of the
human microbiome with downstream
effects on disease risk and disease
penetrance.

Effects of Antibiotics

Antimicrobial agents can drastically
alter the composition of the intestinal
and oral microbiota contingent on the
spectrum and dosage, route of admin-
istration, and treatment duration.75–77

Reduction in microbial diversity is of-
ten observed within days of ingestion
of antibiotics, and complete recovery of
initial bacterial community composition

is rarely achieved.75,77 Moreover, pro-
found alterations of microbial com-
munities have been shown within days
of treatment with the fluoroquinolone
ciprofloxacin. The lack of recovery from
this perturbation by several organisms
emphasizes the potential impact of ex-
cessive antimicrobial therapy.75 The
impact on the native gut microbiota is
pronounced in infants ,1 year of age,
with significant reductions in Bifido-
bacterium and Bacteroides as well as
overall reductions of bacterial com-
munity diversity.29,78 Additional risks
associated with antimicrobial treat-
ment include the selection of antibiotic-
resistant strains of bacteria and the
development of C difficile–associated
diarrhea.76,77,79–81 Several studies have
shown the persistent increase of eryth-
romycin B (ermB) gene levels in fecal
samples after antibiotic treatment with
macrolides like clarithromycin.77,82 The
occurrence of C difficile infections is
increasing in the United States, and

this disease pattern may be due to the
expansion of preexisting C difficile
populations after antibiotic treatment
or the acquisition of spores from a
hospital environment.83,84 Additionally,
reduced diversity of the intestinal
microbiome due to widespread use of
antibiotics may be placingmore children
at risk for C difficile infections and other
causes of antibiotic-associated diarrhea/
colitis.63 These reports demonstrate the
importance of judicious application of
antibiotics to minimize potentially dele-
terious effects on the composition and
function of the human microbiome.

ALTERED STATES OF THE HUMAN
MICROBIOME AND PEDIATRIC
DISEASES

Skin Microbiome, Dermatologic,
and Immune-Mediated Disorders

Actinobacteria, Proteobacteria, Firmi-
cutes, and Bacteroidetes represent the
predominant phyla colonizing the adult
humanskin, and considerable bacterial
diversity was observed at the species
level.17 Metagenomic sequencing also
revealed significant interpersonal var-
iation among individuals and temporal
variation dependent on the specific
body site.17 The phylum Firmicutes
predominates at specific skin sites in
the infant microbiome, possibly as a
result of differences in the structure
and composition of infant skin com-
pared with adult skin.41,85 Changes
in the microbiota linked to skin dis-
eases have been found in children,
including psoriasis, atopic dermatitis,
and acne.17,86–90 A study of psoriatic
lesions on adult skin revealed sig-
nificantly overrepresented Firmi-
cutes, while the Proteobacteria and
Actinobacteria phyla were significan-
tly underrepresented compared with
healthy skin.86 Furthermore, sequence-
based analysis identified the presence
of several species not previously as-
sociated with atopic dermatitis, such
as Stenotrophomonas maltophilia.89

FIGURE 2
Effects of diet, host, and environmental factors on the microbiome. Antibiotic use, diet, host, and en-
vironmental factors can affect the composition of the microbiota. In this model, balanced microbial
composition may result in symbiosis among resident microbes, production of immunomodulatory
compounds, and subsequent regulation of the immune response. Disruption or alteration of the
microbiota by environmental factors such as diet and antibiotic use could result in dysbiosis and
dysregulation of the immune response. (Reproduced with permission from Maslowski KM, Mackay CR.
Diet, gut microbiota and immune responses. Nat Immunol. 2011;12[1]:6.)
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The frequency of atopic diseases such
aseczema,asthma,and foodallergies is
rising in incidence and linked to alter-
ations of the intestinal microbiota.53

The hygiene hypothesis, proposed by
Strachan in 1989, suggested that the
lack of infections in early infancy led to
this observed rise in atopic disease.91

As the interaction of immune cells with
microbial antigens is fundamental to
the function and development of the
adaptive immune response, the lack of
immune stimulation during early life
in developed countries could account
for increased immune dysregulation
observed in asthma and atopic dis-
eases.2,42,51 Delays or changes in the
core microbiome could also potentially
affect the development of the immune
response.70 Epidemiologic data provide
further evidence that infants delivered
via cesarean delivery have higher inci-
dences of atopic diseases such as
asthma and type 1 diabetes and food
allergies compared with vaginally de-
livered infants.92–94

Pulmonary Microbiome and
Diseases of the Respiratory Tract

Few metagenomic studies in the liter-
aturehavedescribed themicrobiomeof
the human respiratory tract. While
some studies have reported stable oral
microbial communities in adults and
children,16,95 others have found highly
variable and diverse bacterial commu-
nities in the nasopharynx of children
that were independent of antibiotic
use.96 Bacterial communities in the
respiratory tract of intubated patients
with ventilator-associated pneumonia
demonstrated infection by the pathogen
Pseudomonas aeruginosa associated
with concomitant loss of microbial di-
versity after antibiotic administration.97

Compared with culture-based studies,
pyrosequencing studies identified
a more diverse and comprehensive
set of microbes in cystic fibrosis.98

Pyrosequencing also revealed greater

interpersonal variability of bacterial
community compositions in the lungs
of patients with cystic fibrosis, which
may be influenced by colonization of
bacterial communities in the oral
cavity.99,100 Sequencing-based stud-
ies are expanding our appreciation
of diverse and abundant microbial
communities in the respiratory tracts
of healthy patients and those with
cystic fibrosis.100,101

GI Microbiome and Intestinal
Disorders

The pathophysiology of NEC appears to
be multifactorial, with premature birth
being the most pronounced risk fac-
tor.102 Other factors in the development
of NEC include intestinal immaturity,
an excessive intestinal inflammatory
response to microbial stimuli, and
colonization by disease-predisposing
microbial populations in the GI tract.103

Several studies using metagenomic
comparisons of fecal microbiota repor-
ted a reduction in microbial diversity in
preterm infants with NEC compared with
healthy preterm infants.15,104 However,
other studies reported similar overall
microbial profiles between infants with
NEC and control infants.105,106 Recent
studies of infants with NEC found in-
creased abundances of Proteobacteria
(Fig 3) including Citrobacter sp in fecal
microbiota.15,105 Furthermore, Neu et al
recently described a greater pro-
portion of Gammaproteobacteria in
fecal microbiota prior to the diagnosis
of NEC in infants.107 Treatment regi-
mens for NEC currently include the
prolonged use of parenteral antibiotics,
which may reduce intestinal microbial
diversity and preclude colonization by a
diverse community ofmicrobes.104,108,109

Human-associated microbial communi-
ties with reduced microbial diversity
may be supplemented by probiotics
or expressed breast milk, as several
studies have shown a reduced incidence
of NEC in preterm infants after breast
milk and probiotic consumption.110–113

The composition of the intestinal
microbiome differs between healthy
individuals and individuals with inflam-
matory bowel disease (IBD)with respect
to phylogenetic diversity and relative
abundancesofmicrobial taxa.114–116 This
imbalance or disruption of the host
microbiota, termeddysbiosis, can induce
an inflammatory response by the host
as evidenced in Crohn disease.117,118

Studies have shown that the gut micro-
biota of individuals with IBD exhibited
reduced proportions of Firmicutes and
Bacteroidetes and an increased pro-
portion of Proteobacteria compared
with healthy individuals (Fig 3).115,119

Present evidence suggests that IBD may
result from abnormal interactions be-
tween indigenous microbiota and the
host immune system.120–122 A reduced
abundance of Faecalibacterium praus-
nitzii, a member of the Firmicutes phyla,
has been associatedwith Crohn disease
activity.115 Anti-inflammatory effects of

FIGURE 3
Disease states reveal phylum-level differences
comparedwith healthy controls. Comparisons of
the relative abundances of predominant bacte-
rial phyla in IBD, type 2 diabetes, and NEC com-
pared with healthy controls. Fecal samples
from infants with NEC and patients with type 2
diabetes were compared with healthy controls
revealing a predominance of Proteobacteria in
patients with NEC. Cecal samples from patients
with IBD were compared with healthy controls,
and relative abundances were assessed.
(Reproduced with permission from Spor A,
Koren O, Ley R. Unravelling the effects of the en-
vironment and host genotype on the gut micro-
biome. Nat Rev Microbiol. 2011;9[4]:281.)
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F prausnitzii were demonstrated by cyto-
kine studies in vitro and a murine TNBS-
induced colitis model.115 In addition,
metabolomic studies yielded signature
microbial metabolites possibly involved
in the pathogenesis of Crohn disease.123

Irritable bowel syndrome (IBS) is a
functional GI disorder that includes
recurrent abdominal pain and changes
in defecation patterns ranging from
hard to watery stool.124 Although the
pathogenesis of IBS is also not well
understood, dysbiosis has been asso-
ciated with diarrhea-predominant IBS
and constipation-predominant IBS. The
intestinal microbiota of patients with
diarrhea-predominant IBS differs from
that of healthy subjects with respect
to the relative prevalence of genera,
including Lactobacillus, Streptococcus,
Ruminococcus, and Veillonella.125,126

Specific microbial signatures in school-
age, preadolescent children with IBS
compared with healthy controls were
recently described and included a
greater abundance of Gammaproteo-
bacteria and an association of Alistipes
with greater pain frequency. Pediatric
IBS subtypes were distinguished by
using microbial feature selection and
compositional differences of the hu-
man intestinal microbiome.34

Treatment and Manipulation of the
Human Microbiome

Manipulation of the humanmicrobiome
may include microbial supplements
(probiotics or synbiotics), foods or
substrates (diet or prebiotics), and
microbial suppression or elimina-
tion (antibiotics) strategies. Benefi-
cial microbes such as Lactobacillus,
Bifidobacterium, and Streptococcus are
commonly used as probiotics, which

are defined as “live microorganisms
which when administered in adequate
amounts confer a health benefit on
the host.”127 Probiotics are believed
to assist the resident microbiota in
preventing pathogen adherence,128,129

downregulating proinflammatory cyto-
kines,130 inducing immunoglobulin A
production,131 and enhancing intestinal
mucosal barrier function and epithelial
integrity.129 Recent studies have dem-
onstrated that probiotic L reuteri tar-
gets sensory nerves in the enteric
nervous system, thereby affecting pain
perception and gut motility.132 Probiotic
formulations are generally believed to
be safe, and the American Academy of
Pediatrics has supported the adminis-
tration of probiotics for the treatment
of acute gastroenteritis and the pre-
vention of antibiotic-associated di-
arrhea.108,133 Prebiotics, which are
nondigestible food ingredients that
stimulate the growth and activity of
designated species of beneficial bacte-
ria, may enhance the treatment efficacy
of other anti-inflammatory medications
by stimulating butyrate production in
humans and suppressing production of
proinflammatory cytokines.134,135 Syn-
biotics, a combination of both probiotics
and prebiotics, have also been used to
treat inflammatory diseases.136 Pro-
biotics and prebiotics may be applied
in the regulation and homeostasis of
intestinal microbial composition and
as a therapeutic strategy for various
disorders.137,138 Other therapies have
been effective in restoring normal
bacterial communities including the
transplantation of fecal microbiota
from a healthy donor to a patient. Fecal
transplantation has been increasingly
used in the last 2 decades for C diffi-
cile infection, with a success rate of

.90%.139–141 Analysis of the microbiota
could result in the development of natu-
rally derived drugs to treat chronic in-
flammation, and additional evidence
suggests that enteric bacteria produce
immunomodulatorymolecules that have
anti-inflammatory properties.142–144 For
example, a recent study demonstrated
that a polysaccharide of Bacteroides
fragilis had immunomodulatory prop-
erties and prevented intestinal in-
flammation in mice.69 More examples
of these naturally derived substances
include bacteriocins, which are anti-
microbial peptides produced by bac-
teria that inhibit the growth of other
bacteria in the microbial community.
Broad- and narrow-spectrum bacteri-
ocins have been effective against
C difficile.145,146 In addition to bacter-
iocins, antibiotics may selectively tar-
get classes of organisms in the human
microbiome. Combinations of anti-
biotics, probiotics, and diet may yield
potent strategies to manipulate and
reshape disease-prone microbiomes.

CONCLUSIONS

The importance of the microbiota to
many aspects of human health and
the realization that its foundation is
established in early infancy are be-
coming increasingly recognized. The
rapidly advancing knowledge of the
human microbiome, through meta-
genomic analysis, has yielded in-
formation regarding the differences
observed between healthy and disease
states and factors that influence the
composition and diversity of the
microbiome. Future studiesmay lead to
improved health benefits for pediatric
patients through the manipulation of
the intestinal microbiota.
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