
Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated

A commentary by Ronald E. Delanois, MD, et al., is linked to the online version of this article at jbjs.org.

Effect of Body Mass Index on Reoperation and Complications After Total Knee Arthroplasty

Eric R. Wagner, MD, Atul F. Kamath, MD, Kristin Fruth, BS, William S. Harmsen, MS, and Daniel J. Berry, MD

Investigation performed at the Mayo Clinic, Rochester, Minnesota

Background: High body mass index (BMI) is associated with increased rates of complications after total knee arthroplasty. To date, to our knowledge, studies have examined risk as a dichotomous variable using specific BMI thresholds. The purpose of this investigation was to quantify implant survival and the risk of common complications after total knee arthroplasty using BMI as a continuous variable.

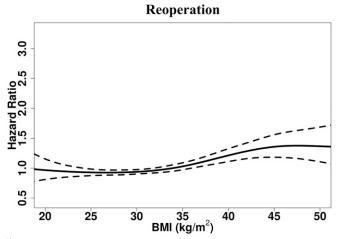
Methods: Using prospectively collected data from our institutional total joint registry, we analyzed 22,289 consecutive knees, in 16,136 patients, treated with primary total knee arthroplasty from 1985 to 2012. The mean BMI of these patients at the time of the surgical procedure was 31.3 kg/m² (range, 11 to 69 kg/m²). The Kaplan-Meier survival method was used to estimate survivorship, reoperations, and common complications, with associations of outcomes assessed using a Cox regression model.

Results: Utilizing smoothing spline parameterization, we found that reoperation (p < 0.001) and implant revision or removal rates (p < 0.001) increased with increasing BMI after total knee arthroplasty. Increasing BMI also was associated with increased rates of wound infection (hazard ratio [HR], 1.07; p < 0.001) and deep infection (HR, 1.08; p < 0.001) per unit of BMI over 35 kg/m². A BMI of 35 to 40 kg/m² was associated with a higher rate of implant revision for aseptic loosening (p < 0.001) and for polyethylene wear (p < 0.001) compared with a BMI of 18 to 24.99 kg/m². There was no correlation between BMI and risk of venous thromboembolism, tibiofemoral instability, or need for knee manipulation.

Conclusions: The rates of reoperation, implant revision or removal, and many common complications after total knee arthroplasty were strongly associated with BMI.

Level of Evidence: Prognostic Level IV. See Instructions for Authors for a complete description of levels of evidence.

Peer Review: This article was reviewed by the Editor-in-Chief and one Deputy Editor, and it underwent blinded review by two or more outside experts. It was also reviewed by an expert in methodology and statistics. The Deputy Editor reviewed each revision of the article, and it underwent a final review by the Editor-in-Chief prior to publication. Final corrections and clarifications occurred during one or more exchanges between the author(s) and copyeditors.


♦ he effect of obesity on many elective procedures has become an important consideration 1-6, as it has been estimated⁷⁻⁹ that approximately 35% of adults in the United States and 30% of adults worldwide have a body mass index (BMI) of \geq 30 kg/m². As the number of obese adults has increased, the costs directly attributed to obesity and associated health-care resource utilization have developed into a necessary concern in elective procedures¹⁰.

Obesity has been identified as an independent risk factor for early development of osteoarthritis of the knee¹¹. It has been estimated12 that more than one-half of patients undergoing a total knee arthroplasty have a BMI of ≥30 kg/m², many of them at a younger age than their non-obese counterparts 11,13. With the demand for total knee arthroplasties projected to increase through 2021¹⁴, it has become even more critical for patients and surgeons to understand the association between BMI and the risk of complications and implant survivorship when making decisions prior to elective procedures.

Morbid obesity has been linked to many early surgical complications after total joint arthroplasty, such as superficial wound infections and thromboembolic events^{12,15-18}. A meta-analysis suggested increased rates of infection requiring a

Disclosure: No outside source of funding was used for this study. On the Disclosure of Potential Conflicts of Interest forms, which are provided with the online version of the article, one or more of the authors checked "yes" to indicate that the author had a relevant financial relationship in the biomedical arena outside the submitted work and "yes" to indicate that the author had a patent and/or copyright, planned, pending, or issued, broadly relevant to this work.

THE JOURNAL OF BONE & JOINT SURGERY JBJS.ORG VOLUME 98-A · NUMBER 24 · DECEMBER 21, 2016 EFFECT OF BODY MASS INDEX ON REOPERATION AND COMPLICATIONS AFTER TOTAL KNEE ARTHROPLASTY

 $^{\rm Fig.~1}$ A graph showing the reoperation risk as a function of BMI. The dashed lines indicate the 95% CI.

revision surgical procedure in obese patients after total knee arthroplasty¹³. Although studies have begun to correlate total knee arthroplasty outcomes with different BMI categories, no previous study, to our knowledge, has comprehensively examined the effects of obesity as a continuous variable across all BMIs.

There also remains controversy regarding the impact of BMI on longer-term implant survivorship and mechanical implant failure. Several studies have not found a significant association, and some have postulated that lower activity levels might offset mechanical effects of increased forces on implants associated with higher BMI^{19,20}. Finally, there is little information on the effect of BMI on the risk of tibiofemoral instability or the need for knee manipulation.

The purpose of this study was to examine the effect of patient BMI on the risk of complications, reoperations, and implant revision or removal after total knee arthroplasty.

Materials and Methods

A fter institutional review board approval, this investigation was performed utilizing a large, single-institution total joint registry²¹. This registry prospectively captures patient demographic characteristics, operative details, complications, reoperations, implant revisions, and clinical outcome scores for patients treated with total joint arthroplasty. Patients routinely are asked to follow up with the surgeon twice during the year after the operation and then again at postoperative years 2 and 5 and subsequently at 5-year intervals. Patients who are unable to attend follow-up appointments in person are contacted to complete a standardized questionnaire²².

Study Population

Patients who declined research authorization, underwent unicompartmental knee arthroplasty, underwent total knee arthroplasty for tumor resection or acute fracture, or had a prior patellectomy were excluded from the study. All other patients who underwent a primary total knee arthroplasty from January 1, 1985, to December 31, 2012, at our institution were included in this study. Using our total joint registry, we identified patient BMI, demographic characteristics, primary diagnoses, and surgical indications. The study cohort consisted of 22,289 primary total knee arthroplastics (16,136 consecutive patients).

Outcome Measures

The primary outcome measures were reoperation, implant revision or removal for any reason, revision for mechanical failure, aseptic loosening, polyethylene wear or tibiofemoral instability, superficial or deep infection, knee manipulation, and thromboembolic events. Implant survival and risks of reoperation, revision (or implant removal), infection, and knee manipulation were assessed according to BMI.

Statistical Analysis

The Kaplan-Meier survival method was used for survival estimates. Cox proportional hazards regression was used to assess the association of joint arthroplasty outcomes with patient variables. These associations were parameterized using a smoothing spline model. Results are reported as hazard ratios (HRs) with 95% confidence intervals (CIs). Models were adjusted for correlations between the 2 knees in patients who had bilateral primary total knee arthroplasty. The main variable was BMI. We examined each outcome's association with BMI across the range of all BMIs using the smoothing spline graphs. The figures examine HRs as a function of BMI; then the observed patterns (for example, does risk increase at a specific threshold?) on the graphs were used to guide inclusion of BMI thresholds into the models. We examined BMI between 20 and 50 kg/m², setting BMI of <20 kg/m² as equal to 20 kg/m² and BMI of >50 kg/m² as equal to 50 kg/m², because of few patients beyond these extremes. A second analysis was conducted using the commonly used BMI ranges of <18 kg/m², 18 to 24.99 kg/m² (reference group), 25 to 29.99 kg/m², 30 to 34.99 kg/m², 35 to 39.99 kg/m², and ≥40 kg/m². Cumulative risk was calculated by subtracting the 10-year Kaplan-Meier survival rate from 100%. To examine the effects of confounding variables on a possible association of BMI with the outcomes, a multivariate model was

TABLE I Univariate Analysis of Reoperation, Revision or Implant Removal, and Complication Risk Among Total Knee Arthroplasties Stratified by BMI Thresholds

	HR*	P Value
Reoperation		
$<30 \text{ kg/m}^2$	1.0	
≥30 kg/m²	1.03† (1.02 to 1.04)	<0.001‡
Revision or implant removal		
$<30 \text{ kg/m}^2$	1.0	
≥30 kg/m²	1.05† (1.03 to 1.07)	<0.001‡
Infection (superficial and deep)		
$<35 \text{ kg/m}^2$	1.0	
≥35 kg/m²	1.07§ (1.05 to 1.09)	<0.001‡
Infection (deep)		
$<35 \text{ kg/m}^2$	1.0	
≥35 kg/m²	1.08§ (1.05 to 1.11)	<0.001‡
Manipulation under anesthesia		
$<30 \text{ kg/m}^2$	1.0	
≥30 kg/m ²	0.96† (0.90 to 1.03)	0.28

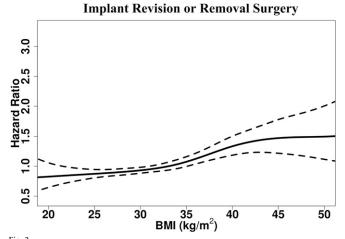
^{*}The values are given as the HR, with the 95% CI in parentheses. \dagger These values are the HR for each 1-unit increase in BMI above 30 kg/m². \dagger These values were significant. \S These values are the HR for each 1-unit increase in BMI above 35 kg/m².

EFFECT OF BODY MASS INDEX ON REOPERATION AND COMPLICATIONS AFTER TOTAL KNEE ARTHROPLASTY

TABLE II Univariate Analysis of Reoperation, Revision or Implant Removal, and Complication Risk Among Total Knee Arthroplasties Stratified by BMI

by Bivii				
	HR*	P Value	Overall P Value	Cumulative 10-Year Risk
Reoperation			<0.001†	
$<18 \text{ kg/m}^2$	2.79 (1.52 to 5.13)	<0.001‡		20.1% (6.5% to 32.6%)
$18 \text{ to } 24.99 \text{ kg/m}^2$	1.0			10.0% (8.6% to 11.2%)
25 to 29.99 kg/m^2	1.08 (0.93 to 1.26)	0.31		11.2% (10.3% to 12.0%
30 to 34.99 kg/m ²	1.00 (0.86 to 1.17)	0.99		10.0% (9.1% to 10.9%)
35 to 39.99 kg/m ²	1.34 (1.13 to 1.58)	<0.001‡		13.4% (11.8% to 15.0%
≥40 kg/m²	1.46 (1.21 to 1.76)	<0.001‡		14.4% (12.3% to 16.4%
Revision or implant removal			<0.001‡	
$<18 \text{ kg/m}^2$	2.59 (1.15 to 5.82)	0.02‡		7.3% (0.0% to 17.1%)
18 to 24.99 kg/m ²	1.0			5.2% (4.1% to 6.3%)
25 to 29.99 kg/m ²	1.27 (1.03 to 1.56)	0.03‡		6.8% (6.0% to 7.6%)
30 to 34.99 kg/m ²	1.14 (0.92 to 1.42)	0.22		5.7% (5.0% to 6.5%)
35 to 39.99 kg/m ²	1.66 (1.32 to 2.10)	<0.001‡		8.6% (7.1% to 10.0%)
≥40 kg/m²	1.92 (1.49 to 2.47)	<0.001‡		8.7% (6.9% to 10.5%)
Infection (superficial and deep)			<0.001‡	
<18 kg/m ²	1.94 (0.49 to 7.87)	0.35		2.6% (0.0% to 9.4%)
18 to 24.99 kg/m ²	1.0			2.5% (1.8% to 3.1%)
25 to 29.99 kg/m ²	1.14 (0.84 to 1.54)	0.41		2.8% (2.3% to 3.2%)
30 to 34.99 kg/m ²	1.06 (0.78 to 1.45)	0.70		2.6% (2.2% to 3.1%)
35 to 39.99 kg/m ²	1.35 (0.97 to 1.90)	0.08		3.1% (2.4% to 3.8%)
≥40 kg/m²	2.09 (1.48 to 2.94)	<0.001‡		5.0% (3.8% to 6.3%)
Infection (deep)			<0.001‡	
$<18 \text{ kg/m}^2$	2.67 (0.65 to 10.94)	0.17		2.6% (0.0% to 9.4%)
18 to 24.99 kg/m^2	1.0			1.9% (1.2% to 2.5%)
25 to 29.99 kg/m ²	1.04 (0.72 to 1.50)	0.83		2.0% (1.6% to 2.4%)
$30 \text{ to } 34.99 \text{ kg/m}^2$	0.91 (0.63 to 1.32)	0.62		1.8% (1.4% to 2.1%)
35 to 39.99 kg/m ²	1.25 (0.83 to 1.88)	0.29		2.0% (1.4% to 2.6%)
≥40 kg/m ²	2.01 (1.33 to 3.04)	<0.001‡		3.7% (2.6% to 4.9%)
Manipulation under anesthesia			0.43	
$<18 \text{ kg/m}^2$	2.63 (0.58 to 11.84)	0.21		6.2% (0.0% to 16.2%)
18 to 24.99 kg/m ²	1.0			2.6% (1.9% to 3.5%)
25 to 29.99 kg/m ²	1.10 (0.82 to 1.47)	0.52		2.8% (2.4% to 3.4%)
$30 \text{ to } 34.99 \text{ kg/m}^2$	0.97 (0.72 to 1.31)	0.85		2.5% (2.1% to 3.1%)
35 to 39.99 kg/m ²	1.15 (0.82 to 1.61)	0.42		3.0% (2.3% to 4.0%)
≥40 kg/m²	0.86 (0.57 to 1.30)	0.47		2.2% (1.6% to 3.6%)

^{*}The values are given as the HR, with the 95% CI in parentheses. †The values are given as the 10-year cumulative risk, with the 95% CI in parentheses. †These values were significant.


utilized including the variables of age, sex, surgical indication, and time period of the surgical procedure (1985 to 1995, 1996 to 2004, 2005 to 2012). Significance was set at p < 0.05.

Results

The mean age at the time of the surgical procedure was 69 years (range, 14 to 96 years), and 56% of patients were female. The mean BMI at the time of arthroplasty was 31.3 kg/m² (range, 11 to 69 kg/m²). There were 12,889 posterior stabilized implants and 9,400 cruciate-retaining designs. Of the total

knee arthroplasties performed, 50 were performed in patients with a BMI of <18 kg/m², 2,800 were performed in patients with a BMI of 18 to 24.99 kg/m², 7,328 were performed in patients with a BMI of 25 to 29.99 kg/m², 6,706 were performed in patients with a BMI of 30 to 34.99 kg/m², 3,277 were performed in patients with a BMI of 35 to 39.99 kg/m², and 2,128 were performed in patients with a BMI of \geq 40 kg/m². With regard to the time period of the surgical procedure, the mean BMI in patients who underwent arthroplasty was \geq 9.9 kg/m²


The Journal of Bone & Joint Surgery · jbjs.org Volume 98-A · Number 24 · December 21, 2016 EFFECT OF BODY MASS INDEX ON REOPERATION AND COMPLICATIONS AFTER TOTAL KNEE ARTHROPLASTY

A graph showing the implant revision or removal risk as a function of BMI. The dashed lines indicate the 95% CI.

from 1985 to 1995, 31.3 kg/m 2 from 1996 to 2004, and 32.7 kg/m 2 from 2005 to 2012.

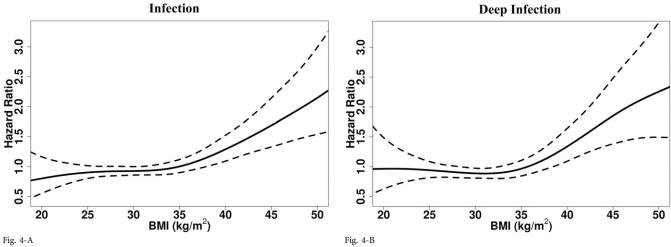
During the period of follow-up, there were 1,233 revision or implant removal surgical procedures, including 623 for mechanical failure, 324 for infection, 150 for tibiofemoral instability, 41 for periprosthetic fracture, and 95 for other reasons. In addition to the revision surgical procedures, 986 additional knees had procedures or reoperations not involving an implant revision surgical procedure: manipulation for limited motion (n = 461), superficial infection and wound complications (n = 275), and other reasons, including periprosthetic fracture (n = 250); 531 knee arthroplasties were followed by thromboembolic events (deep venous thrombosis or pulmonary embolism). For the 6,238 unrevised knee arthroplastieSs in patients alive at last contact, the mean followup after the surgical procedure was 9.5 years (range, 0.1 to 30 years). For the entire cohort of patients who did not undergo revision or implant removal, the mean follow-up was

Figs. 3-A through 3-D Graphs showing the risks of revision surgical procedures for mechanical failure (Fig. 3-A), aseptic loosening (Fig. 3-B), polyethylene wear (Fig. 3-C), and tibiofemoral instability (Fig. 3-D) as a function of BMI. The dashed lines indicate the 95% CI.

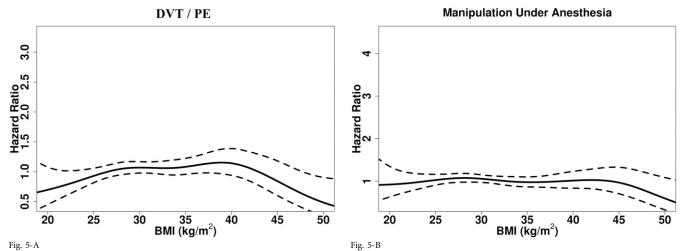
The Journal of Bone & Joint Surgery · jbjs.org Volume 98-A · Number 24 · December 21, 2016 EFFECT OF BODY MASS INDEX ON REOPERATION AND COMPLICATIONS AFTER TOTAL KNEE ARTHROPLASTY

	HR*	P Value	Overall P Value	Cumulative 10-Year Risk
Any revision for mechanical failure			<0.001‡	
$<18 \text{ kg/m}^2$	1.78 (0.49 to 6.47)	0.38		4.8% (0.0% to 13.8%)
18 to 24.99 kg/ m^2	1.0			2.0% (1.2% to 2.7%)
25 to 29.99 kg/ m^2	1.47 (1.08 to 2.00)	0.01‡		3.8% (3.2% to 4.5%)
30 to 34.99 kg/m ²	1.30 (0.93 to 1.75)	0.13		2.9% (2.3% to 3.5%)
35 to 39.99 kg/m ²	2.24 (1.60 to 3.13)	<0.001‡		5.5% (4.3% to 6.8%)
≥40 kg/m²	1.49 (0.98 to 2.26)	0.06		3.4% (2.1% to 4.7%)
Aseptic loosening			<0.001‡	
<18 kg/m ²	2.98 (0.81 to 10.97)	0.10		4.8% (0.0% to 13.7%)
$18 \text{ to } 24.99 \text{ kg/m}^2$	1.0			1.4% (0.8% to 2.0%)
25 to 29.99 kg/m ²	1.35 (0.91 to 2.00)	0.14		2.2% (1.8% to 2.7%)
$30 \text{ to } 34.99 \text{ kg/m}^2$	1.26 (0.85 to 1.89)	0.25		1.9% (1.5% to 2.4%)
$35 \text{ to } 39.99 \text{ kg/m}^2$	2.29 (1.50 to 3.49)	<0.001‡		3.5% (2.5% to 6.4%)
≥40 kg/m²	1.66 (0.99 to 2.77)	0.053		2.5% (1.4% to 3.6%)
Wear			0.001‡	
$<18 \text{ kg/m}^2$	0.67 (0.04 to 11.07)	0.78		0.0%
18 to 24.99 kg/ m^2	1.0			0.9% (0.4% to 1.5%)
25 to 29.99 kg/m ²	1.47 (1.01 to 2.14)	0.04		2.4% (1.8% to 2.9%)
$30 \text{ to } 34.99 \text{ kg/m}^2$	1.25 (0.85 to 1.84)	0.26		1.6% (1.2% to 2.1%)
35 to 39.99 kg/m ²	2.05 (1.35 to 3.12)	<0.001‡		3.0% (2.0% to 3.9%)
≥40 kg/m²	0.83 (0.45 to 1.54)	0.56		1.0% (0.2% to 1.8%)
Component fracture			0.15	
<18 kg/m ²	7.88 (0.36 to 170.50)	0.19		0.0%
$18 \text{ to } 24.99 \text{ kg/m}^2$	1.0			0.1% (0.0% to 0.2%)
25 to 29.99 kg/m ²	1.86 (0.54 to 6.38)	0.32		0.3% (0.1% to 0.5%)
30 to 34.99 kg/m ²	1.22 (0.33 to 4.52)	0.76		0.1% (0.0% to 0.3%)
35 to 39.99 kg/m ²	3.47 (0.96 to 12.59)	0.06		0.4% (0.1% to 0.8%)
≥40 kg/m ²	2.95 (0.65 to 13.27)	0.16		0.4% (0.0% to 0.9%)
Revision for tibiofemoral instability			0.29	
<18 kg/m ²	3.01 (0.43 to 21.27)	0.27		6.8% (0.0% to 13.6%)
18 to 24.99 kg/ m^2	1.0			1.0% (0.4% to 1.6%)
25 to 29.99 kg/ m^2	1.10 (0.65 to 1.88)	0.72		0.6% (0.2% to 1.0%)
$30 \text{ to } 34.99 \text{ kg/m}^2$	0.77 (0.44 to 1.37)	0.38		0.9% (0.6% to 1.2%)
35 to 39.99 kg/m ²	1.21 (0.65 to 2.45)	0.54		0.6% (0.4% to 0.9%)
≥40 kg/m ²	1.41 (0.70 to 2.82)	0.33		0.7% (0.3% to 1.2%)

^{*}The values are given as the HR, with the 95% CI in parentheses. †The values are given as the 10-year cumulative risk, with the 95% CI in parentheses. †These values were significant.


11.7 years. The Kaplan-Meier survival estimate free of implant revision or removal was 97% (95% CI, 96% to 97%) at 5 years, 93% (95% CI, 92% to 94%) at 10 years, 88% (95% CI, 87% to 89%) at 15 years, and 82% (95% CI, 81% to 84%) at 20 years.

Reoperation


We found a significant association (p < 0.001) between an increased risk of any ipsilateral knee reoperation and increasing BMI (Fig. 1). Beginning at a BMI of 30 kg/m², the smoothing

spline curve demonstrated a 3% increased risk of any reoperation per unit increase in BMI (HR, 1.03; p < 0.001) (Table I). When compared with patients with a BMI of 18 to 24.99 kg/m², those with a BMI of 35 to 39.99 kg/m² (HR, 1.34; p < 0.001) and those with a BMI of \geq 40 kg/m² (HR, 1.46; p < 0.001) had an increased risk of reoperation (Table II). The association between reoperation and BMI of 35 to 39.99 kg/m² (p = 0.04) and BMI of \geq 40 kg/m² (p = 0.12) was slightly diminished after taking into account age, sex, surgical indication, and time period (see Appendix).

THE JOURNAL OF BONE & JOINT SURGERY 'JBJS.ORG VOLUME 98-A · NUMBER 24 · DECEMBER 21, 2016 EFFECT OF BODY MASS INDEX ON REOPERATION AND COMPLICATIONS AFTER TOTAL KNEE ARTHROPLASTY

Figs. 4-A and 4-B Graphs showing the risk of superficial and deep infection (Fig. 4-A) and of deep infection (Fig. 4-B) as a function of BMI. The dashed lines indicate the 95% CI.

Figs. 5-A and 5-B Graphs showing the risk of thromboembolic events (DVT/PE = deep vein thrombosis or pulmonary embolism) (**Fig. 5-A**) and of manipulation under anesthesia (**Fig. 5-B**) as a function of BMI. The dashed lines indicate the 95% CI.

Implant Revision or Removal

We found a strong association between BMI and the risk of implant revision or removal (Fig. 2). Examining BMI using smoothing spline analysis, there was a 5% increased risk of implant revision or removal for each unit of BMI above 30 kg/m² (HR, 1.05; p < 0.001) (Table I). Relative to patients with a BMI of 18 to 24.99 kg/m², there was an increased risk of implant revision or removal for patients with a BMI of 35 to 39.99 kg/m² (HR, 1.66; p < 0.001) and those with a BMI of \geq 40 kg/m² (HR, 1.92; p < 0.001) (Table II). The significant association between BMI and revision remained after taking into account age, sex, surgical indication, and time period (see Appendix).

We further evaluated the risk of revision for mechanical implant failure (defined as revision for aseptic loosening, polyethylene wear, or implant fracture) (Fig. 3-A). The risk of revision for mechanical failure overall, aseptic loosening, and

polyethylene wear peaked at a BMI of around 40 kg/m² and then declined for higher BMIs. When compared with patients with a BMI of 18 to 24.99 kg/m², patients with a BMI of 35 to 39.99 kg/m² (HR, 2.24; p < 0.001) had a significantly higher risk of revision for mechanical failure, and those with a BMI of \geq 40 kg/m² (HR, 1.49; p = 0.06) also had an increased risk of revision for mechanical failure (Table III). The associations between BMI and revision surgical procedures for mechanical failure remained similar in the multivariate model (see Appendix).

Specific categories of mechanical implant failure also were assessed (Figs. 3-B and 3-C), including risk of revision for aseptic loosening and polyethylene wear. When compared with patients with a BMI of 18 to 24.99 kg/m², there was an increased risk of revision for aseptic loosening in patients with a BMI of 35 to 39.99 kg/m² (HR, 2.29; p < 0.001) and borderline-significant increased risk for patients

EFFECT OF BODY MASS INDEX ON REOPERATION AND COMPLICATIONS AFTER TOTAL KNEE ARTHROPLASTY

with a BMI of \geq 40 kg/m² (HR, 1.66; p = 0.053). Compared with patients with a BMI of 18 to 24.99 kg/m², there was an increased risk of revision for polyethylene wear in patients with a BMI of 35 to 39.99 kg/m² (HR, 2.05; p < 0.001) but not in patients with a BMI of \geq 40 kg/m² (Table III). There was no significant association between BMI and the risk of a revision surgical procedure for fractured components among the BMI categories (Table III), although there was a trend toward higher risk in patients with higher BMI for this infrequent complication.

There was no significant association between BMI and risk of revision for tibiofemoral instability (Fig. 3-D).

Infections

A striking association between BMI and complication risk was seen for wound infection (superficial or deep) (Fig. 4-A). The smoothing spline analysis demonstrated that beginning at a BMI threshold of 35 kg/m², there was a 7% increased risk of superficial or deep infection per unit increase in BMI above 35 kg/m² (HR, 1.07; p < 0.001) (Table I). Furthermore, patients with a BMI of \geq 40 kg/m² had more than a twofold increased risk of superficial or deep infection relative to patients with a BMI of 18 to 24.99 kg/m² (HR, 2.09; p < 0.001) (Table II). The significant association between a BMI of \geq 40 kg/m² and infection remained after taking into account age, sex, surgical indication, and time period (see Appendix).

There was also a striking association between BMI and the development of deep periprosthetic infection (Fig. 4-B). Beginning at a BMI of 35 kg/m², there was an 8% increased risk of developing a deep periprosthetic joint infection per unit of BMI (HR, 1.08; p < 0.001). Compared with patients with a BMI of 18 to 24.99 kg/m², patients with a BMI of \geq 40 kg/m² had an increased risk of deep infection (HR, 2.01; p < 0.001) (Table II). In the multivariate model, this association between BMI and deep infection remained (see Appendix).

Venous Thromboembolic Events and Risk of Knee Manipulation Under Anesthesia

BMI was not associated with an increased risk of thromboembolic events (Fig. 5-A), nor was it associated with an increased risk of knee manipulation under anesthesia (Fig. 5-B and Tables I and II).

Discussion

In this large consecutive series of 22,289 knees (16,136 patients) treated with total knee arthroplasty, increasing BMI was associated with increasing risk of reoperations, implant revision or removal, and infection. The threshold for BMI at which the risk of complications began to increase was between 30 and 35 kg/m² (depending on the variable), and the increase was progressively more pronounced for higher BMIs and was especially notable in morbidly obese patients (those with a BMI of ≥40 kg/m²). BMI was associated with a higher risk of revision for mechanical failure, including aseptic loosening and polyethylene wear, with a peak at a BMI of about 40 kg/m²; however, this risk declined in patients with the highest BMIs.

BMI did not have a significant association with risk of revision for tibiofemoral instability, knee manipulation under anesthesia, and venous thromboembolism.

Periprosthetic Infection

Periprosthetic joint infection was the complication most strongly associated with high BMI. The correlation between infection and obesity has been shown by other authors^{15-17,22-30}, who have reported widely variable levels of risk at different BMI thresholds. There are likely multiple factors that contribute to this finding, including the large adipose tissue layer (large potential dead space that poses an infection risk), comorbidities such as diabetes mellitus (which poses an independent infection risk)^{16,17,26}, and longer operative times (also an independent risk factor for infection)³¹ in patients with higher BMIs. Furthermore, some studies have suggested a proinflammatory state in obese patients, with potentially an impaired immune response to infection³²⁻³⁴.

Revision for Mechanical Failure

Revision for mechanical implant failure etiologies, including aseptic loosening, bearing surface wear, and implant fracture, is one of the most common causes of implant revision in total knee arthroplasty³⁵. There remains a paucity of information linking obesity with mechanical failure after total knee arthroplasty. In fact, although Kerkhoffs et al. demonstrated an increased overall implant revision rate associated with obesity, there were not enough studies in their meta-analysis to support an association between obesity and aseptic implant failure¹³. Our results demonstrate increased rates of mechanical failure for patients with a BMI of 35 to 39.99 kg/m². This increased failure rate was seen for both revision for aseptic loosening and revision for polyethylene wear, with a peak at about a BMI of 40 kg/m² and a decline with a BMI of >40 to 45 kg/m². We hypothesize that the increased stress on implant interfaces and bearing surfaces may account for the higher aseptic loosening and wear rates seen in the patients with a BMI of 35 to 39.99 kg/m². The lack of strongly increased risk of revision for aseptic implant loosening and wear above a BMI of 45 kg/m² may possibly represent lower activity levels in this group of patients 19,20.

Comparison with Total Hip Arthroplasty

The results of this study may be compared and contrasted with those of a recent paper using the same methodology on total hip arthroplasty. As with knee arthroplasty, the risks of reoperation, implant removal or revision, and infection were found to correlate strongly with BMI. However, the risk of infection was even more extreme for patients with a high BMI after total hip arthroplasty than for patients with a high BMI after total knee arthroplasty. For total hip arthroplasty, no correlation was found between BMI and aseptic implant loosening, but such a correlation was demonstrated for patients who had undergone knee arthroplasty, with a peak at a BMI of about 40 kg/m².

The Journal of Bone & Joint Surgery · jbjs.org Volume 98-A · Number 24 · December 21, 2016 EFFECT OF BODY MASS INDEX ON REOPERATION AND COMPLICATIONS AFTER TOTAL KNEE ARTHROPLASTY

Limitations and Strengths

The results of this study should be interpreted in the light of certain limitations. This series consisted of patients treated at a single institution. Although this limited generalizability, it also represented a strength by minimizing potential institutionally based confounders. Also, although the duration of follow-up was limited for some patients, the Kaplan-Meier survivorship analysis accounted for the differences in patient follow-up. We accounted for age, sex, diagnoses, and surgical indications, but we did not account for other patient and surgically related factors, such as the type of implants used. For the complication of infection, high BMI is correlated with risk of diabetes mellitus, which is an independent risk factor for infection, and high BMI also may correlate with other nutritional factors such as serum albumin level that also affect infection risk. Separating the effects of these factors from BMI in individual patients was beyond the scope of this study and represents an area for further study. The frequency of patients with high BMI progressively increased during the time period covered by the study and the practice of knee surgery also changed during the time period of the study. For this reason, the analysis also was performed with a multivariate model including the date of the surgical procedure, which did not dramatically change the results. Finally, significant findings of a small magnitude in large study cohorts may not represent clinically important differences for individual patients.

The major strengths of this study included a large patient population, prospective data collection, and the long period (28 years) of analysis. Furthermore, there was completeness of follow-up for specific end points. Finally, the uniqueness of this study involves the examination of the shape of the curve correlating the effect of BMI over the observed range to each outcome of interest.

Summary

In conclusion, this series contributes to our understanding regarding the association between BMI and the outcomes after total knee arthroplasty, including reoperation, revision, and common complications. These data may be used by patients,

surgeons, and physicians to make informed decisions concerning the relative risks and benefits of elective total knee arthroplasty in patients with different BMIs. Both the provider and the patient may consider the relative risk of a complication as well as the absolute risk of a complication when considering the risks and benefits of an elective procedure. Although the efficacy of preoperative interventions to reduce BMI on preventing complications remains unknown, these findings highlight the potential for collaborative efforts between care providers to reduce complications by modifying preoperative risk factors, such as BMI, prior to elective procedures. In health-care policy and the evolution of different delivery models, these findings may be considered as part of preoperative risk stratification.

Appendix

Tables showing multivariate analyses among total knee arthroplasties stratified by BMI for reoperation, revision or implant removal, and complication risk and for revision or implant removal risk for mechanical failure are available with the online version of this article as a data supplement at jbjs.org.

Eric R. Wagner, MD¹ Atul F. Kamath, MD¹ Kristin Fruth, BS¹ William S. Harmsen, MS¹ Daniel J. Berry, MD¹

¹Departments of Orthopedic Surgery (E.R.W., A.F.K., and D.J.B.) and Biostatistics and Health Sciences Research (K.F. and W.S.H.), Mayo Clinic, Rochester, Minnesota

E-mail address for E.R. Wagner: wagner.eric@mayo.edu
E-mail address for A.F. Kamath: akamath@post.harvard.edu
E-mail address for K. Fruth: fruth.kristin@mayo.edu
E-mail address for W.S. Harmsen: harmsen.william@mayo.edu
E-mail address for D.J. Berry: berry.daniel@mayo.edu

References

- 1. Ho KM, Bertenshaw C, Same S, Schneider M, Williams KA, Godsell T, Hird K. Differential associations between body mass index and outcomes after elective adult cardiac surgery: a linked data cohort study. Anaesth Intensive Care. 2013 Sep;41 (5):573-83.
- 2. Kartheuser AH, Leonard DF, Penninckx F, Paterson HM, Brandt D, Remue C, Bugli C, Dozois E, Mortensen N, Ris F, Tiret E; Waist Circumference Study Group. Waist circumference and waist/hip ratio are better predictive risk factors for mortality and morbidity after colorectal surgery than body mass index and body surface area. Ann Surg. 2013 Nov;258(5):722-30.
- **3.** Giles KA, Wyers MC, Pomposelli FB, Hamdan AD, Ching YA, Schermerhorn ML. The impact of body mass index on perioperative outcomes of open and endovascular abdominal aortic aneurysm repair from the National Surgical Quality Improvement Program, 2005-2007. J Vasc Surg. 2010 Dec;52(6):1471-7. Epub 2010 Sep 16.
- **4.** Zoucas E, Lydrup ML. Hospital costs associated with surgical morbidity after elective colorectal procedures: a retrospective observational cohort study in 530 patients. Patient Saf Surg. 2014 Jan 3;8(1):2.
- **5.** Buerba RA, Fu MC, Gruskay JA, Long WD 3rd, Grauer JN. Obese Class III patients at significantly greater risk of multiple complications after lumbar surgery: an analysis of 10,387 patients in the ACS NSQIP database. Spine J. 2014 Sep 1;14 (9):2008-18. Epub 2013 Dec 6.

- **6.** Seicean A, Alan N, Seicean S, Worwag M, Neuhauser D, Benzel EC, Weil RJ. Impact of increased body mass index on outcomes of elective spinal surgery. Spine (Phila Pa 1976). 2014 Aug 15;39(18):1520-30.
- 7. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, Mullany EC, Biryukov S, Abbafati C, Abera SF, Abraham JP, Abu-Rmeileh NM, Achoki T, AlBuhairan FS, Alemu ZA, Alfonso R, Ali MK, Ali R, Guzman NA, Ammar W, Anwari P, Banerjee A, Barquera S, Basu S, Bennett DA, Bhutta Z, Blore J, Cabral N, Nonato IC, Chang JC, Chowdhury R, Courville KJ, Criqui MH, Cundiff DK, Dabhadkar KC, Dandona L, Davis A, Dayama A, Dharmaratne SD, Ding EL, Durrani AM, Esteghamati A, Farzadfar F. Fav DF. Feigin VL. Flaxman A. Forouzanfar MH. Goto A. Green MA. Gupta R, Hafezi-Nejad N, Hankey GJ, Harewood HC, Havmoeller R, Hay S, Hernandez L, Husseini A, Idrisov BT, Ikeda N, Islami F, Jahangir E, Jassal SK, Jee SH, Jeffreys M, Jonas JB, Kabagambe EK, Khalifa SE, Kengne AP, Khader YS, Khang YH, Kim D, Kimokoti RW, Kinge JM, Kokubo Y, Kosen S, Kwan G, Lai T, Leinsalu M, Li Y, Liang X, Liu S, Logroscino G, Lotufo PA, Lu Y, Ma J, Mainoo NK, Mensah GA, Merriman TR, Mokdad AH, Moschandreas J, Naghavi M, Naheed A, Nand D, Narayan KM, Nelson EL, Neuhouser ML, Nisar MI, Ohkubo T, Oti SO, Pedroza A, Prabhakaran D, Roy N, Sampson U, Seo H, Sepanlou SG, Shibuya K, Shiri R, Shiue I, Singh GM, Singh JA, Skirbekk V, Stapelberg NJ, Sturua L, Sykes BL, Tobias M, Tran BX, Trasande L, Toyoshima H, van de Vijver S, Vasankari TJ,

THE JOURNAL OF BONE & JOINT SURGERY . JBJS.ORG VOLUME 98-A . NUMBER 24 . DECEMBER 21, 2016

EFFECT OF BODY MASS INDEX ON REOPERATION AND COMPLICATIONS AFTER TOTAL KNEE ARTHROPLASTY

Veerman JL, Velasquez-Melendez G, Vlassov VV, Vollset SE, Vos T, Wang C, Wang X, Weiderpass E, Werdecker A, Wright JL, Yang YC, Yatsuya H, Yoon J, Yoon SJ, Zhao Y, Zhou M, Zhu S, Lopez AD, Murray CJ, Gakidou E. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014 Aug 30;384(9945):766-81. Epub 2014 May 29.

- **8.** Campos P, Saguy A, Ernsberger P, Oliver E, Gaesser G. The epidemiology of overweight and obesity: public health crisis or moral panic? Int J Epidemiol. 2006 Feb;35(1):55-60. Epub 2005 Dec 8.
- **9.** Olshansky SJ, Passaro DJ, Hershow RC, Layden J, Carnes BA, Brody J, Hayflick L, Butler RN, Allison DB, Ludwig DS. A potential decline in life expectancy in the United States in the 21st century. N Engl J Med. 2005 Mar 17;352 (11):1138-45.
- **10.** Thompson D, Edelsberg J, Colditz GA, Bird AP, Oster G. Lifetime health and economic consequences of obesity. Arch Intern Med. 1999 Oct 11;159(18):2177-83.
- **11.** Stürmer T, Günther KP, Brenner H. Obesity, overweight and patterns of osteoarthritis: the Ulm Osteoarthritis Study. J Clin Epidemiol. 2000 Mar 1;53(3):307-13.
- 12. Namba RS, Paxton L, Fithian DC, Stone ML. Obesity and perioperative morbidity in total hip and total knee arthroplasty patients. J Arthroplasty. 2005 Oct;20(7) (Suppl 3):46-50.
- 13. Kerkhoffs GM, Servien E, Dunn W, Dahm D, Bramer JA, Haverkamp D. The influence of obesity on the complication rate and outcome of total knee arthroplasty: a meta-analysis and systematic literature review. J Bone Joint Surg Am. 2012 Oct 17:94(20):1839-44.
- **14.** Kurtz SM, Ong KL, Lau E, Bozic KJ. Impact of the economic downtum on total joint replacement demand in the United States: updated projections to 2021. J Bone Joint Surg Am. 2014 Apr 16:96(8):624-30.
- **15.** Friedman RJ, Hess S, Berkowitz SD, Homering M. Complication rates after hip or knee arthroplasty in morbidly obese patients. Clin Orthop Relat Res. 2013 Oct;471 (10):3358-66. Epub 2013 May 14.
- **16.** Dowsey MM, Choong PF. Obese diabetic patients are at substantial risk for deep infection after primary TKA. Clin Orthop Relat Res. 2009 Jun;467(6):1577-81. Epub 2008 Oct 8.
- 17. Malinzak RA, Ritter MA, Berend ME, Meding JB, Olberding EM, Davis KE. Morbidly obese, diabetic, younger, and unilateral joint arthroplasty patients have elevated total joint arthroplasty infection rates. J Arthroplasty. 2009 Sep;24(6) (Suppl):84-8. Epub 2009 Jul 15.
- **18.** Memtsoudis SG, Besculides MC, Gaber L, Liu S, González Della Valle A. Risk factors for pulmonary embolism after hip and knee arthroplasty: a population-based study. Int Orthop. 2009 Dec;33(6):1739-45. Epub 2008 Oct 17.
- **19.** Collins RA, Walmsley PJ, Amin AK, Brenkel IJ, Clayton RA. Does obesity influence clinical outcome at nine years following total knee replacement? J Bone Joint Surg Br. 2012 Oct:94(10):1351-5.
- **20.** Jackson MP, Sexton SA, Walter WL, Walter WK, Zicat BA. The impact of obesity on the mid-term outcome of cementless total knee replacement. J Bone Joint Surg Br. 2009 Aug;91(8):1044-8.

- **21.** Berry DJ, Kessler M, Morrey BF. Maintaining a hip registry for 25 years. Mayo Clinic experience. Clin Orthop Relat Res. 1997 Nov:344:61-8.
- **22.** Grogan TJ, Dorey F, Rollins J, Amstutz HC. Deep sepsis following total knee arthroplasty. Ten-year experience at the University of California at Los Angeles Medical Center. J Bone Joint Surg Am. 1986 Feb;68(2):226-34.
- **23.** Bozic KJ, Lau E, Kurtz S, Ong K, Berry DJ. Patient-related risk factors for post-operative mortality and periprosthetic joint infection in Medicare patients undergoing TKA. Clin Orthop Relat Res. 2012 Jan;470(1):130-7.
- **24.** Bozic KJ, Lau E, Ong K, Chan V, Kurtz S, Vail TP, Rubash HE, Berry DJ. Risk factors for early revision after primary TKA in Medicare patients. Clin Orthop Relat Res. 2014 Jan;472(1):232-7.
- **25.** Higuera CA, Elsharkawy K, Klika AK, Brocone M, Barsoum WK. 2010 Mid-America Orthopaedic Association Physician in Training Award: predictors of early adverse outcomes after knee and hip arthroplasty in geriatric patients. Clin Orthop Relat Res. 2011 May;469(5):1391-400. Epub 2011 Feb 23.
- **26.** Jämsen E, Nevalainen P, Eskelinen A, Huotari K, Kalliovalkama J, Moilanen T. Obesity, diabetes, and preoperative hyperglycemia as predictors of periprosthetic joint infection: a single-center analysis of 7181 primary hip and knee replacements for osteoarthritis. J Bone Joint Surg Am. 2012 Jul 18;94(14):e101.
- **27.** Kannan A, Jiranek WA. Obesity and periprosthetic joint infection. Orthopaedic Knowledge Online Journal. 2013 Jun;11(6).
- **28.** Mortazavi SM, Molligan J, Austin MS, Purtill JJ, Hozack WJ, Parvizi J. Failure following revision total knee arthroplasty: infection is the major cause. Int Orthop. 2011 Aug;35(8):1157-64. Epub 2010 Oct 21.
- **29.** Peersman G, Laskin R, Davis J, Peterson M. Infection in total knee replacement: a retrospective review of 6489 total knee replacements. Clin Orthop Relat Res. 2001 Nov:392:15-23.
- **30.** Wilson MG, Kelley K, Thornhill TS. Infection as a complication of total kneereplacement arthroplasty. Risk factors and treatment in sixty-seven cases. J Bone Joint Surg Am. 1990 Jul;72(6):878-83.
- **31.** Liabaud B, Patrick DA Jr, Geller JA. Higher body mass index leads to longer operative time in total knee arthroplasty. J Arthroplasty. 2013 Apr;28(4):563-5. Epub 2012 Nov 8.
- **32.** Fontana L, Eagon JC, Colonna M, Klein S. Impaired mononuclear cell immune function in extreme obesity is corrected by weight loss. Rejuvenation Res. 2007 Mar;10(1):41-6.
- **33.** Ghanim H, Aljada A, Hofmeyer D, Syed T, Mohanty P, Dandona P. Circulating mononuclear cells in the obese are in a proinflammatory state. Circulation. 2004 Sep 21;110(12):1564-71. Epub 2004 Sep 13.
- **34.** Milner JJ, Beck MA. The impact of obesity on the immune response to infection. Proc Nutr Soc. 2012 May;71(2):298-306. Epub 2012 Mar 14.
- **35.** Naudie DD, Ammeen DJ, Engh GA, Rorabeck CH. Wear and osteolysis around total knee arthroplasty. J Am Acad Orthop Surg. 2007 Jan;15(1):53-64.
- **36.** Wagner ER, Kamath AF, Fruth KM, Harmsen WS, Berry DJ. Effect of body mass index on complications and reoperations after total hip arthroplasty. J Bone Joint Surg Am. 2016 Feb 3;98(3):169-79.