The use of pulsed CO₂ lasers for the treatment of vulvovaginal atrophy

Salvatore Stefano, Athanasiou Stavros, and Candiani Massimo

Purpose of review
This article reviews the literature regarding the safety and efficacy of the use of a pulsed CO₂ laser for the treatment of vulvovaginal atrophy (VVA).

Recent findings
Prospective observational studies have demonstrated histological changes after the use of pulsed CO₂ laser vaginally in atrophic conditions. Increased collagen and extracellular matrix production has been reported together with an increase in the thickness of the vaginal epithelium with the formation of new papillae. Three different observational studies reported a significant improvement of VVA assessed subjectively (with a 10-point visual analogue scale) and objectively (using the Vaginal Health Index) after a cycle of three treatments of pulsed CO₂ laser. Also sexual function (assessed with the Female Sexual Function Index) and quality of life (evaluated with the SF12 questionnaire) significantly improved. No complications or side-effects were reported during or after the laser procedure that was performed in an outpatient setting.

Summary
Increasing evidence with histological and clinical data supports the use of pulsed CO₂ lasers in the treatment of VVA; however, no randomized control trial (sham versus treatment) has yet been produced and no data on the duration of therapy are currently available.

Keywords
dyspareunia, pulsed CO₂ laser, quality of life, sexual function, vaginal dryness, vulvovaginal atrophy

INTRODUCTION
Vaginal atrophy is a common and bothersome condition that occurs following estrogen decline during menopause. Available treatments have specific contraindications or poor patient compliance despite good efficacy. This review covers the use of a novel treatment with pulsed CO₂ laser for the treatment of vulvovaginal atrophy (VVA), describing its rationale, mechanism of action, and the emerging histological and clinical evidence of this therapy for such a bothersome condition. Future applications and research are also explored.

TEXT OF REVIEW
Vulvovaginal atrophy
VVA is a common condition secondary to estrogen depletion; this could happen as a consequence of natural menopause or as the result of iatrogenic events (such as surgery, chemotherapy, or radiotherapy for oncological disorders). VVA can affect 40% of postmenopausal women [1] with a great impact on quality of life and self-image of the sufferers [2].

The definition of VVA is not standardized and many authors have proposed different classification. A recent review [3] evaluated the available literature for VVA terminology and assessment; the authors finally proposed their own definition of VVA as a common manifestation of estrogen deficiency associated with specific symptoms of which the most common are: vaginal dryness, itching/irritation, and dyspareunia. However, even this new proposal does not cover all the aspects consequent to estrogen deficiency. In May 2013, a consensus conference of the Board of Directors of the International Society for the Study of Women’s Sexual Health and the Board of
KEY POINTS

- Vulvovaginal atrophy (VVA) is a common condition with great impact on quality of life.
- Pulsed CO₂ laser is a novel treatment for VVA performed in an outpatient setting.
- Histological samples after pulsed CO₂ laser treatment show changes in the vaginal lamina propria (increased collagen production and extracellular matrix), as well as in the vaginal epithelium with restoration of new papilla and thickness increase.
- Vaginal dryness, dyspareunia, and all the VVA symptoms significantly improve after a cycle of three laser treatments.
- Improvement of VVA symptoms after pulsed CO₂ laser determines a better sexuality and quality of life.

Trustees of The North American Menopause Society [4**] agreed that the term genitourinary syndrome of menopause was medically more appropriate, emphasizing the common involvement of the genital and lower urinary tract in this condition. So called ‘irritative bladder symptoms’ such as frequency of micturition, urgency, and dysuria are, in fact, common complaints in women with VVA. The lack of estrogens determines tissue modifications in the female urogenital tract including thinning of the epithelium layer, reduced vascularization, reduced elastic fibers, changes in the content of collagen, reduced lubrication, and increased vaginal pH [5]. All of these changes contribute to the development of increasing tissue friability and of all the VVA symptoms, including sexual dysfunction and dyspareunia.

Available treatments for vaginal atrophy

International guidelines recommend local estrogens, lubricants, moisturizers, and ospemiphene, a new selective estrogen receptor modulators (SERM) molecule, for the treatment of VVA [6,7]. However, all of these options have some limitations:

Local estrogens, despite showing good efficacy in treating VVA symptoms, should be prescribed with caution and after appropriately counselling women with a previous history of malignant conditions sensitive to estrogens and with a previous history of thrombo venous embolism. Moreover, no safety data are available on a long-term basis and patient adherence to treatment is not good.

Lubricants and moisturizers do not really treat the condition but can help in alleviating the symptoms and they are used when needed.

Ospemiphene is a new drug (SERM) approved by European Medical Agency and Food and Drug Administration for VVA symptoms [8,9]. However, its effect on breast tissue and lower urinary tract still needs to be clarified.

CO₂ pulsed laser

‘Laser’ is an acronym that stands for ‘Light Amplification by Stimulated Emission of Radiation’. Lasers can differ for many different aspects and different light sources are commonly used in medicine with specific wavelength. CO₂ laser falls in the infrared spectrum with a wavelength of 10.600 nm and it is highly absorbed by water. These two characteristics determine the superficial action of this laser.

The mode of delivery of the laser beam can also vary: it can be continuous or pulsed (fractional). The latter avoids possible tissue damage secondary to overheating. It is, in fact, possible to set the fractional mode not just for the power delivered but also for the dot spacing and the dwell time, preserving the treated tissue from any unwanted effect. Tissue modifications produced in this way can, therefore, vary depending on different machine settings and can include vaporization, ablation, coagulation, collagen shrinkage, or collagen neosynthesis and remodeling.

CO₂ pulsed lasers in medicine

Pulsed CO₂ lasers are widely used in dermatology for many conditions including scars and atrophic changes caused by different factors (acne, ageing and so on) [10–13]. In 2003, Capon and Mordon [14] reported the mechanism of action of pulsed CO₂ laser in regenerating atrophic tissue through a micro ablative and thermal effect. The latter induces some changes in cells’ metabolism. The heating shock induces the production of some proteins called heat shock proteins. Heat shock protein 70 stimulates the action of Transforming Growth Factorβ in activating fibroblasts to become fibroblasts that are responsible for the synthesis of new extracellular matrix, of new collagen and new elastic fibers. Thirty days are needed for this cascade of events to occur.

Pulsed CO₂ lasers have also been used in dentistry for severe conditions such as oral leukoplakia [15]. In all of these conditions, the regenerative effects of the pulsed CO₂ laser were able to produce remodeling of the affected tissue into healthy tissue.

Ex-vivo and feasibility study of pulsed CO₂ laser for vulvovaginal atrophy

The feasibility of using a pulsed CO₂ laser to treat VVA symptoms was first explored in an ex-vivo
study [16**] wherein the safety and the effects on the vaginal tissue were evaluated. In this study, the most appropriate setting of the laser machine was also tested.

Five different treatment protocols were evaluated. The study population consisted of postmenopausal women with VVA symptoms who were undergoing surgery for anterior vaginal wall prolapse. None of them was on hormonal replacement therapy and all consented to participate in the study. The five different protocols were used treating one side of the excessive vaginal wall that had to be trimmed after fascial plication, whereas the contralateral part was always used as control. The excised samples of the vaginal wall were sent for histological evaluation. In all cases, the control side of the trimmed vagina confirmed an atrophic state showing a flattened epithelium, loss of papilla, and absence of activated fibroblasts in the lamina propria. The five different protocols were associated with different degrees of changes in the epithelium and in the lamina propria in relation to mild ablative effects, fibroblast activation, modifications of collagen, elastic fibers, and mucopolysaccharides in the lamina propria. On qualitative analysis, the protocol with the best profile of safety and effectiveness was protocol 3 (30W of DOT power, 1000 μs of DOT dwell, 1000 μm of DOT spacing, and smart stack 3), wherein the more pronounced ablative effects and the presence of activated fibroblasts in the lamina propria are evident. These results were confirmed in all five participants. Under an electron microscope, fine collagen microfibrils could be clearly observable, with fine molecular filaments (arrows) in close relationship with collagen microfibrils in the course of fibrillogenesis.

The microablative pulsed CO\textsubscript{2} laser produces a controlled heat shock response that stimulates the production of a small family of proteins: the heat shock proteins [17]. Heat shock proteins 43, 47, and 70 (a protein subtype which is a chaperone of collagen, which is overexpressed after laser irradiation) could play a role in inducing the production of many growth factors.

Transforming growth factor-A is known to be a key element in the inflammatory response and in the fibrogenic process, wherein fibroblasts produce collagen and, most generally, the extracellular matrix. In this study, we observed interesting histological and intracellular changes in the vaginal wall of postmenopausal women irradiated with the microablative pulsed CO\textsubscript{2} laser. These modifications can be interpreted as tissue remodeling in a rejuvenating sense. The most evident effects produced by the microablative fractional CO\textsubscript{2} laser are the neocollagenesis with a return of the collagen fibers to a trabecular disposition, which is how it appears in premenopausal women.

Clinical study on the use of pulsed CO\textsubscript{2} laser for vulvovaginal atrophy symptoms and sexual function

The clinical efficacy of the pulsed CO\textsubscript{2} laser has been reported in three different prospective observational studies.

In 2014, for the first time Salvatore et al. [18**] reported a 12-week evaluation of the use of pulsed CO\textsubscript{2} laser for the treatment of VVA symptoms in 50 postmenopausal women. The treatment protocol included three outpatient sessions with an interval of one month in between. All women were assessed on entry and one month after each single laser procedure as follows:

- **Subjectively**, with a 10-point visual analogue scale for each single VVA symptom (vaginal dryness, burning, itching, dyspareunia, and dysuria);
- **Objectively**, using the Vaginal Health Index [19], a composite score including five different variables (overall elasticity, fluid secretion type, pH, epithelial mucosa, and moisture);

Table 1. Assessment at baseline and at 30 days after each single pulsed CO\textsubscript{2} laser treatment for VHI and VVA symptoms (evaluated with a 10-point VAS) expressed as mean value \pm SD

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>4-week follow-up</th>
<th>8-week follow-up</th>
<th>12-week follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>VHI (mean \pm SD)</td>
<td>13.1 ± 2.5</td>
<td>17.1 ± 1.9a</td>
<td>22.1 ± 1.9ab</td>
<td>23.1 ± 1.9abc</td>
</tr>
<tr>
<td>Vaginal dryness (n, mean \pm SD)</td>
<td>8.3 ± 2.1</td>
<td>5.5 ± 2.9a</td>
<td>3.4 ± 2.5ab</td>
<td>2.7 ± 1.9b</td>
</tr>
<tr>
<td>Vaginal itching (n, mean \pm SD)</td>
<td>6.1 ± 3.0</td>
<td>3.3 ± 3.1a</td>
<td>2.1 ± 2.8ab</td>
<td>1.5 ± 1.7b</td>
</tr>
<tr>
<td>Dyspareunia (n, mean \pm SD)</td>
<td>8.1 ± 2.8</td>
<td>5.7 ± 3.2a</td>
<td>4.5 ± 3.0ab</td>
<td>3.3 ± 2.3ab</td>
</tr>
<tr>
<td>Dysuria (n, mean \pm SD)</td>
<td>5.0 ± 2.4</td>
<td>2.8 ± 1.3a</td>
<td>2.0 ± 0.9ab</td>
<td>1.1 ± 1.1b, c</td>
</tr>
</tbody>
</table>

VHI, Vaginal Health Index. Adapted from [18**].
aStatistical significant difference with baseline.
bStatistical significant difference with 1-month follow-up.
cStatistical significant difference with 2-month follow-up.
With a 10-point visual analogue scale to grade pain (with the left extreme of the scale indicating the absence of pain, and the right indicating severe) experienced by women and caused by the insertion of the probe, the movements of the probe during the treatment and the application of laser.

At the end of the treatment cycle statistically significant improvement compared with baseline was observed with each single evaluation tool used in this study (Table 1). The procedure was well tolerated and only mild pain was reported during the insertion of the probe during the first treatment (Table 2). No complications or side-effects were reported.

In this study vaginal samples were taken for histological evaluation on entry and after the first CO2 laser treatment in five women. In all of these samples important vaginal wall changes were observed with a remodeling of the lamina propria and the epithelial layer. In the latter new and/or larger papilla were produced; a size increase in the epithelial cells rich in glycogen exfoliating superficially was also evident. A more detailed description of histological changes of the vaginal wall secondary to pulsed CO2 laser treatment in atrophic vagina was reported by Zerbinati et al. [20*].

In 2015, Perino et al. [21*] replicated the Salvatore study, recruiting 48 patients and using the same evaluation instruments. VVA symptoms significantly improved (P < 0.0001) after three sessions of vaginal fractional CO2 laser treatment compared with baseline. Objectively, the Vaginal Health Index score showed also a significant improvement (P < 0.0001). Overall, 91.7% of patients reported that they were satisfied or very satisfied with the procedure and experienced considerable improvement in quality of life. No adverse events due to fractional CO2 laser treatment were reported.

VVA can have a very important impact on sexual function and deeply influence intimacy. The Closer Survey by Nappi et al. [22] showed, in fact, that because of VVA 58% of women and 61% of men reduced their sexual activity, whereas 35% of women and 14% of men decided to put off having sex. The reason for sexual abandonment was attributed to painful sex by 55% of women and 61% of men, respectively.

In another prospective observational study, Salvatore et al. [23*] investigated the effects of the fractional microablative CO2 laser on sexual function and overall satisfaction with sexual life in postmenopausal women with VVA. Seventy-seven postmenopausal women with VVA symptoms were included and treated with three sessions of fractional microablative CO2 laser system (SmartXide2 V(2)LR, Monalisa Touch, DEKA, Florence, Italy), at 30 days interval. Sexual function and quality of life were evaluated with the Female Sexual Function Index (FSFI) [24] and the Short Form 12 [25], respectively, both at baseline and at 12-week follow-up. A significant improvement in the total score and in each single specific domain of the FSFI was observed at 12-week follow-up compared with baseline (P < 0.001) as illustrated in Table 3.

Table 2. Self-assessment of pain experienced during each single laser treatment expressed as mean value ± SD

<table>
<thead>
<tr>
<th>Pain experienced during insertion of the probe (mean ± SD)</th>
<th>First laser application</th>
<th>Second laser application</th>
<th>Third laser application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pain experienced due to movements of the probe (mean ± SD)</td>
<td>2.6 ± 1.5</td>
<td>1.0 ± 0.8a</td>
<td>0.2 ± 0.4a</td>
</tr>
<tr>
<td>Pain experienced during laser application (mean ± SD)</td>
<td>0.6 ± 0.8</td>
<td>0.3 ± 0.5a</td>
<td>0.1 ± 0.4a</td>
</tr>
</tbody>
</table>

Adapted from [18**].

*Statistical significant difference with first laser application.

bStatistical significant difference with second laser application.

Table 3. Sexual function evaluation using the Female Sexual Function Index at baseline and at 12 weeks after pulsed CO2 laser treatment expressed as mean value ± SD

<table>
<thead>
<tr>
<th>FSFI DOMAINS</th>
<th>Desire</th>
<th>Arousal</th>
<th>Lubrication</th>
<th>Orgasm</th>
<th>Satisfaction</th>
<th>Pain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline [T1]</td>
<td>2.4 ± 1.0</td>
<td>2.8 ± 1.7</td>
<td>2.2 ± 1.5</td>
<td>2.8 ± 1.8</td>
<td>2.9 ± 1.9</td>
<td>1.8 ± 1.5</td>
</tr>
<tr>
<td>12-week follow-up [T4]</td>
<td>3.6 ± 0.7</td>
<td>4.8 ± 1.0</td>
<td>4.5 ± 1.4</td>
<td>5.0 ± 1.0</td>
<td>5.1 ± 1.0</td>
<td>4.2 ± 2.0</td>
</tr>
<tr>
<td>P</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
</tbody>
</table>

FSFI, Female Sexual Function Index. Adapted from [23*].
Seventeen (85%) out of 20 women not sexually active because of VVA severity at baseline regained a normal sexual life at the 12-week follow-up.

CONCLUSION
A pulsed CO₂ laser can be successfully and safely used for the treatment of VVA symptoms, with improvement of sexuality and quality of life. However, further evidence should be produced focusing on the duration of efficacy of the CO₂ laser treatment, as well as the amount of placebo effect, with a randomized controlled trial comparing treatment versus sham.

Acknowledgements
None.

Financial support and sponsorship
Disclosure: no funding has been received for this work including from any of the following organizations: National Institute of Health (NIH); Wellcome Trust: Howard Hughes Medical Institute (HHMI); and/or any other.

Conflicts of interest
S.S. received fees from the laser manufacturer (DEKA MELA Srl) to act as a speaker in national and international meetings. For the remaining authors none were declared.

REFERENCES AND RECOMMENDED READING
Papers of particular interest, published within the annual period of review, have been highlighted as:
■ of special interest
■■ of outstanding interest
22. This study represents the feasibility study, as well as the proof of concept for the use of pulsed CO₂ laser on the atrophic vaginal tissue. In this study, the best laser setting for that specific machine was identified.